Microstructural characterization of the emulsified Cu47Ti 33Zr11Ni6Sn2Si1 alloy powder

Ho Suk Kang, Hee Sam Kang, Woo Young Yoon

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    Phase selection and microstructural morphology change of the Cu 47Ti33Zr11Ni6Sn2Si 1 alloy were investigated through the droplet emulsion technique(DET). The emulsified Cu47Ti33Zr 11Ni6Sn2Si1 alloy powders showed several different microstructures depending on the amount of undercooling. The amount of undercooling of the powders was monitored by differential thermal analysis and was matched with the microstructures. The phase transition of Cu47Ti33Zr11Ni6Sn2Si 1 alloy powders according to the increase of undercooling proceeds by the process Cu4Ti3 +CuTi +Cu2Ti +Cu 51Zr14 → Cu4Ti3 + CuTi + Cu2Ti + Cu51Zr14 + CuTi2 → Cu2Ti + Cu51Zr14 + CuTi2 → Cu51Zr14 +CuTi2. Specifically, the morphology and scale of the CuTi2 phase were examined by SEM observation, and area fraction measurement using an image analyzer, transmission electron microscopy studies, and microhardness tests showed that the amorphous phase could be synthesized by DET. A microstructure selection map of Cu 47Ti33Zr11Ni6Sn2Si 1 alloy powders for tailored solidification was also suggested.

    Original languageEnglish
    Title of host publicationHeat Treatment of Materials, AHTM ' 05 - Proceedings of the 3rd Asian Conference on Heat Treatment of Materials
    PublisherTrans Tech Publications Ltd
    Pages623-634
    Number of pages12
    ISBN (Print)9783908451259
    DOIs
    Publication statusPublished - 2006
    Event3rd Asian Conference on Heat Treatment of Materials,(AHTM '05) - Gyeongju, Korea, Republic of
    Duration: 2005 Nov 102005 Nov 12

    Publication series

    NameSolid State Phenomena
    Volume118
    ISSN (Print)1012-0394

    Other

    Other3rd Asian Conference on Heat Treatment of Materials,(AHTM '05)
    Country/TerritoryKorea, Republic of
    CityGyeongju
    Period05/11/1005/11/12

    Keywords

    • Cu-ti-zr-ni-sn-si
    • Droplet emulsion technique(det)
    • Microstructure selection map

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Atomic and Molecular Physics, and Optics
    • General Materials Science

    Fingerprint

    Dive into the research topics of 'Microstructural characterization of the emulsified Cu47Ti 33Zr11Ni6Sn2Si1 alloy powder'. Together they form a unique fingerprint.

    Cite this