Abstract
In the present study, an emphasis was given on elucidating the details of microstructural changes in both undoped FePt and Zr-doped FePt films upon exposure to postdeposition annealing. Recently, the present authors have discovered [S. R. Lee, S. Yang, Y. K. Kim, and J. G. Na, Appl. Phys. Lett. 78, 4001 (2001)] that 3 at.% Zr doping into Fe 59Pt 41 films accelerated the ordering kinetics (10 min at 500°C), accompanying high coercivity H c of 7.3 kOe. Our transmission electron microscopy study on both Fe 59Pt 41 and [Fe 59Pt 41] 97Zr 3 films annealed at 500°C for 60 and 10 min, respectively (both exhibited H c=7300Oe) revealed that the FePtZr film displayed excellent microstructural features: smaller average grain size (D) with narrower distribution (σ) (D=6.0nm,σ=2.3nm) compared with FePt (D=33.6nm, σ=25.0nm). For the FePtZr system, we have found that an ordered phase decomposed into disordered phases (thereby losing the high H c) after 15 min annealing. By evaluating the long-range-order parameter S changes, we speculate that the cause of the disordering was primarily due to the formation of a Pt-Zr compound.
Original language | English |
---|---|
Pages (from-to) | 6857-6859 |
Number of pages | 3 |
Journal | Journal of Applied Physics |
Volume | 91 |
Issue number | 10 I |
DOIs | |
Publication status | Published - 2002 May 15 |
ASJC Scopus subject areas
- Physics and Astronomy(all)