Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) is one of the protein glycosylations affecting various intracellular events. However, the role of O-GlcNAcylation in neurodegenerative diseases such as Alzheimer's disease (AD) is poorly understood. Mitochondrial adenosine 5'-triphosphate (ATP) synthase is a multiprotein complex that synthesizes ATP from ADP and Pi. Here, we found that ATP synthase subunit a (ATP5A) was O-GlcNAcylated at Thr432 and ATP5A O-GlcNAcylationwas decreased in the brains of AD patients and transgenic mouse model, aswell as Aβ-treated cells. Indeed, Aβ bound to ATP synthase directly and reduced the O-GlcNAcylation of ATP5A by inhibition of direct interaction between ATP5A and mitochondrial O-GlcNAc transferase, resulting in decreasedATP production and ATPase activity. Furthermore, treatment of O-GlcNAcase inhibitor rescued the Aβ-induced impairment in ATP production and ATPase activity. These results indicate that Aβ-mediated reduction of ATP synthase activity in AD pathology results from direct binding between Aβ and ATP synthase and inhibition of O-GlcNAcylation of Thr432 residue on ATP5A.
Original language | English |
---|---|
Pages (from-to) | 6492-6504 |
Number of pages | 13 |
Journal | Human Molecular Genetics |
Volume | 24 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2015 Nov 15 |
ASJC Scopus subject areas
- Molecular Biology
- Genetics
- Genetics(clinical)