Abstract
In order to develop solid oxide fuel cells (SOFCs) running on hydrocarbon fuels, we have focused on a new method of improving electrode performance and reducing carbon deposition by coating thin films of samaria-doped ceria (SDC) within the pores of electrode by a sol-gel coating technique. The SDC coating on the pores of anode made it possible to have a good stability for long-term operation due to low carbon deposition and nickel sintering. In this study, we demonstrated a new method of improving electrode performance and reducing carbon deposition by coating thin films of samaria-doped ceria and applied the modification technique to two different types of fuel cell structures, anode-supported SOFC and comb-shaped SOFC. From our results, the maximum power density of an anode-supported cell (electrolyte; 8 mol% YSZ and thickness of 30 μm, and cathode; La0.85Sr0.15 MnO3) with the modified anode was ∼300 mW/cm2 at 700°C in the mixture of methane (25%) and air (75%) as the fuel, and air as the oxidant. The cell was operated for 500 hr without significant degradation of cell performance. For the comb-shaped SOFCs operated in the mixed fuels fuel cell conditions, the cell performance was 40 mW/cm2 at 700°C in the CH4/ O2 ratio of 1.
Original language | English |
---|---|
Pages (from-to) | 83-86 |
Number of pages | 4 |
Journal | Journal of Fuel Cell Science and Technology |
Volume | 3 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2006 Feb |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Mechanics of Materials
- Mechanical Engineering