Abstract
To cluster or partition data/signal, expectation-and-maximisation or variational approximation with a mixture model (MM), which is a parametric probability density function represented as a weighted sum of K densities, is often used. However, model selection to find the underlying K is one of the key concerns in MMclustering, since the desired clusters can be obtained only when K is known. A new model selection algorithm to explore K in a Bayesian framework is proposed. The proposed algorithm builds the density of the model order which information criterion such as AIC and BIC or other heuristic algorithms basically fail to reconstruct. In addition, this algorithm reconstructs the density quickly as compared with the time-consuming Monte Carlo simulation using integrated nested Laplace approximation.
Original language | English |
---|---|
Pages (from-to) | 484-486 |
Number of pages | 3 |
Journal | Electronics Letters |
Volume | 51 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 Mar 19 |
Bibliographical note
Publisher Copyright:© The Institution of Engineering and Technology 2015.
ASJC Scopus subject areas
- Electrical and Electronic Engineering