Abstract
Using the Levenberg-Marquardt nonlinear optimization algorithm and a series of Lorentzian line shapes, the fluorescence emission spectra from BG (Bacillus globigii) bacteria can be accurately modeled. This method allows data from both laboratory and field sources to model the return signal from biological aerosols using a typical LIF (lidar induced fluorescence) system. The variables found through this procedure match individual fluorescence components within the biological material and therefore have a physically meaningful interpretation. The use of this method also removes the need to calculate phase angles needed in autoregressive all-pole models.
Original language | English |
---|---|
Pages (from-to) | 6192-6195 |
Number of pages | 4 |
Journal | Applied optics |
Volume | 46 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2007 Aug 20 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering