TY - JOUR
T1 - Modulation of gut microbiota ecosystem by a glucan-rich snail mucin heteropolysaccharide attenuates loperamide-induced constipation
AU - Kim, Hoon
AU - Jeong, Eun Jin
AU - Park, Chunwoong
AU - Lee, Jeong seok
AU - Kim, Woo Jung
AU - Yu, Kwang Won
AU - Suh, Hyung Joo
AU - Ahn, Yejin
AU - Moon, Sung Kwon
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12/31
Y1 - 2023/12/31
N2 - The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5–267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10–40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72–12.64 % at 10–40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98–12.47 % at 10–40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.
AB - The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5–267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10–40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72–12.64 % at 10–40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98–12.47 % at 10–40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.
KW - Achatina fulica
KW - Akkermansia
KW - Intestinal barrier function
KW - Intestinal dysbiosis
KW - Slow transit constipation
UR - http://www.scopus.com/inward/record.url?scp=85171535723&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.126560
DO - 10.1016/j.ijbiomac.2023.126560
M3 - Article
C2 - 37640190
AN - SCOPUS:85171535723
SN - 0141-8130
VL - 253
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 126560
ER -