MOF-Templated N-Doped Carbon-Coated CoSe2 Nanorods Supported on Porous CNT Microspheres with Excellent Sodium-Ion Storage and Electrocatalytic Properties

Seung Keun Park, Yun Chan Kang

Research output: Contribution to journalArticlepeer-review

150 Citations (Scopus)

Abstract

Three-dimensional (3D) porous microspheres composed of CoSe2@N-doped carbon nanorod-deposited carbon nanotube (CNT) building blocks (CoSe2@NC-NR/CNT) can be successfully synthesized using CNT/Co-based metal-organic framework (ZIF-67) porous microspheres as a precursor. This strategy involves the homogeneous coating of ZIF-67 polyhedrons onto porous CNT microspheres prepared by spray pyrolysis and further selenization of the composites under an Ar/H2 atmosphere. During the selenization process, the ZIF-67 polyhedrons on the CNT backbone are transformed into N-doped carbon-coated CoSe2 nanorods by a directional recrystallization process, resulting in a homogeneous deposition of CoSe2@NC nanorods on the porous CNT microspheres. Such a unique structure of CoSe2@NC-NR/CNT microspheres facilitates the transport of ions, electrons, and mass and provides a conductive pathway for electrons during electrochemical reactions. Correspondingly, the composite exhibits a superior dual functionality as both an electrocatalyst for the hydrogen evolution reaction (HER) and an electrode for sodium-ion batteries (SIBs). The CoSe2@NC-NR/CNT microspheres exhibit a small Tafel slope (49.8 mV dec-1) and a superior stability for HER. Furthermore, the composite delivers a high discharge capacity of 555 mA h g-1 after 100 cycles at a current density of 0.2 A g-1 and a good rate capability for SIBs.

Original languageEnglish
Pages (from-to)17203-17213
Number of pages11
JournalACS Applied Materials and Interfaces
Volume10
Issue number20
DOIs
Publication statusPublished - 2018 May 23

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B2008592 and NRF-2017R1A4A1014806).

Publisher Copyright:
© 2018 American Chemical Society.

Keywords

  • CNT microspheres
  • cobalt selenides
  • hydrogen evolution reaction
  • metal-organic framework
  • sodium-ion battery
  • spray pyrolysis

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'MOF-Templated N-Doped Carbon-Coated CoSe2 Nanorods Supported on Porous CNT Microspheres with Excellent Sodium-Ion Storage and Electrocatalytic Properties'. Together they form a unique fingerprint.

Cite this