Abstract
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to D-ribulose and concomitantly reduces NAD(P)+ to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD+ (S156D, [kcat/Km, NAD]/[kcat/Km, NADP]=10.9, where Km, NAD is the Km for NAD+ and Km, NADP is the Km for NADP+). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP+ as the cofactor (S156H, [kcat/Km, NAD]/[kcat/Km, NADP]=0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.
Original language | English |
---|---|
Pages (from-to) | 3079-3086 |
Number of pages | 8 |
Journal | Applied and environmental microbiology |
Volume | 78 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2012 May |
Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Food Science
- Applied Microbiology and Biotechnology
- Ecology