Molecular doping of nucleic acids into light emitting crystals driven by multisite-intermolecular interaction

Woo Hyuk Jung, Jin Hyuk Park, Seokho Kim, Chunzhi Cui, Dong June Ahn

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We reveal the fundamental understanding of molecular doping of DNAs into organic semiconducting tris (8-hydroxyquinoline) aluminum (Alq3) crystals by varying types and numbers of purines and pyrimidines constituting DNA. Electrostatic, hydrogen bonding, and π-π stacking interactions between Alq3 and DNAs are the major factors affecting the molecular doping. Longer DNAs induce a higher degree of doping due to electrostatic interactions between phosphate backbone and Alq3. Among four bases, single thymine bases induce the multisite interactions of π-π stacking and hydrogen bonding with single Alq3, occurring within a probability of 4.37%. In contrast, single adenine bases form multisite interactions, within lower probability (1.93%), with two-neighboring Alq3. These multisite interactions facilitate the molecular doping into Alq3 particles compared to cytosines or guanines only forming π-π stacking. Thus, photoluminescence and optical waveguide phenomena of crystals were successfully tailored. This discovery should deepen our fundamental understanding of incorporating DNAs into organic semiconducting crystals.

Original languageEnglish
Article number6193
JournalNature communications
Issue number1
Publication statusPublished - 2022 Dec

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)


Dive into the research topics of 'Molecular doping of nucleic acids into light emitting crystals driven by multisite-intermolecular interaction'. Together they form a unique fingerprint.

Cite this