Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes

Yoochan Hong, Minhee Ku, Dan Heo, Seungyeon Hwang, Eugene Lee, Joseph Park, Jihye Choi, Hyeon Jung Lee, Miran Seo, Eun Jig Lee, Jong In Yook, Seungjoo Haam, Yong Min Huh, Dae Sung Yoon, Jin Suck Suh, Jaemoon Yang

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

We describe the development of biomarker-sensitive nanoprobes based on nanoparticle surface energy transfer (NSET) effect that enabling recognition of the expression of membrane type-1 matrix metalloproteinase (MT1-MMP) anchored on invasive cancer cells and its proteolytic activity simultaneously. First of all, we confirmed invasiveness of cancer cell lines (HT1080 and MCF7) via migration and invasion assay. We also prepared gold nanoparticle (GNP) acts as a quencher for fluorescein isothiocyanate (FITC). This FITC is conjugated in end-terminal of activatable fluorogenic peptide (ActFP). The ActFP attach to surface of GNP (GNP-ActFP) for a targeting moiety and proteolytic activity ligand toward MT1-MMP. The GNP-ActFP can generate fluorescence signal when ActFP is cleaved by proteolytic activity after targeting toward MT1-MMP. In order to study specificity for MT1-MMP, GNP-ActFP is treated to HT1080 and MCF7 cells, and then, we determine the in vitro targeting potential and fluorogenic activity of GNP-ActFP for MT1-MMP via fluorescence multi-reader. We also confirmed fluorogenic activity of GNP-ActFP via confocal microscopic imaging, and finally, endocytosis of GNP-ActFP is observed via cellular transmission electron microscopic imaging.

Original languageEnglish
Pages (from-to)171-178
Number of pages8
JournalBiosensors and Bioelectronics
Volume57
DOIs
Publication statusPublished - 2014 Jul 15
Externally publishedYes

Keywords

  • Cancer metastasis
  • Fluorescence
  • Membrane type 1-matrix metalloproteinase (MT1-MMP)
  • Nanoparticle surface energy transfer (NSET)
  • Nanoprobe
  • Proteolysis

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes'. Together they form a unique fingerprint.

Cite this