Molecular structures of flavonoid co-formers for cocrystallization with carbamazepine

Cheong Cheon Lee, Ju Hee Lim, A. Young Cho, Woojin Yoon, Hoseop Yun, Jeong Won Kang, Jonghwi Lee

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Flavonoids have numerous beneficial effects on human health, such as antioxidant capacity and immune-boosting effects, which make them attractive cocrystal formers for drugs. Previously, a co-crystal between carbamazepine (CBZ) and naringenin, a flavonoid, was discovered, but no understanding on the requirements of cocrystal formers was assessed. Herein, the structural requirement of flavonoids cocrystallization with CBZ was examined using eight different natural flavonoids with planar and bent structures and 0–4 phenolic groups including the naringenin. The flavonoids without double bonds in their heterocyclic rings (F1, P2, and N3) formed cocrystals with monoclinic unit cells and a 1:1 CBZ to flavonoid molecular ratio, whereas the flavonoids with double bonds (F1d, C2d, and A3d) did not form cocrystals. F1, P2, and N3 had geometrically bent structures, which enabled the formation of cocrystals. The phenolic groups of flavonoids play an essential role in cocrystal formation with CBZ, undergoing strong intermolecular interactions. The flavonoid with no phenolic group, F0, could not form a cocrystal. For CF1, CP2, and CN3, the melting temperature, packing coefficient, and hydrogen bonding energy of the cocrystals increased as the number of phenolic groups increased. These results confirm that the phenolic groups and molecular geometry of flavonoids are critical cocrystal forming factors.

Original languageEnglish
Pages (from-to)309-317
Number of pages9
JournalJournal of Industrial and Engineering Chemistry
Volume118
DOIs
Publication statusPublished - 2023 Feb 25

Bibliographical note

Funding Information:
This study was financially supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT(MSIT) (NRF-2019R1I1A2A01061397, NRF-2020M3D1A2101800, and Engineering Research Center 2021R1A5A6002853).

Publisher Copyright:
© 2022 The Korean Society of Industrial and Engineering Chemistry

Keywords

  • Antioxidant
  • Cocrystal
  • Flavonoid
  • Pharmaceutical cocrystal
  • Polyphenol

ASJC Scopus subject areas

  • Chemical Engineering(all)

Fingerprint

Dive into the research topics of 'Molecular structures of flavonoid co-formers for cocrystallization with carbamazepine'. Together they form a unique fingerprint.

Cite this