Abstract
YBO3:Tb fine particles with high photoluminescence were prepared by a spray pyrolysis process. The emission intensity of YBO 3:Tb particles under vacuum ultraviolet (VUV) excitation was optimized by controlling the Tb content, excess quantity of boron, and heat-treatment temperature. The highest luminescent intensity under VUV excitation was obtained when 10 atom % Tb with respect to yttrium and 25% excess boron of the stoichiometric quantity were used at 1150°C post-treatment temperature. It was tried to simultaneously control the morphological and luminous properties of YBO3:Tb particles via the modification of the precursor solution to be sprayed. The YBO3:Tb particles prepared from a nitrate aqueous solution which was obtained by only dissolving yttrium nitrate, terbium nitrate, and boric acid in purified water showed rod-like morphology. When the nitrate aqueous solution was modified by NH4OH, however, the prepared particles had not only a spherical-like shape, but also fine and more uniform size distribution than the rod-like particles prepared and the commercial YBO3:Tb particles. In addition, the YBO3:Tb particles prepared from the NH4OH-assisted spray solution showed improved luminescent intensity compared with the particles with a rod-like shape. From X-ray diffraction analysis, it was found that an enhancement of the crystallinity of YBO3:Tb was achieved by using NH4OH as a chemical additive. Finally, the photoluminescence intensity of YBO3:Tb particles optimized in terms of the composition, heat-treatment condition, and morphology was higher than that of the commercial YBO3:Tb particles as well as Zn2SiO 4:Mn.
Original language | English |
---|---|
Pages (from-to) | H69-H73 |
Journal | Journal of the Electrochemical Society |
Volume | 151 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry