Morphology Control Enables Efficient Ternary Organic Solar Cells

Yuanpeng Xie, Fan Yang, Yuxiang Li, Mohammad Afsar Uddin, Pengqing Bi, Bingbing Fan, Yunhao Cai, Xiaotao Hao, Han Young Woo, Weiwei Li, Feng Liu, Yanming Sun

Research output: Contribution to journalArticlepeer-review

218 Citations (Scopus)


Ternary organic solar cells are promising alternatives to the binary counterpart due to their potential in achieving high performance. Although a growing number of ternary organic solar cells are recently reported, less effort is devoted to morphology control. Here, ternary organic solar cells are fabricated using a wide-bandgap polymer PBT1-C as the donor, a crystalline fused-ring electron acceptor ITIC-2Cl, and an amorphous fullerene derivative indene-C60 bisadduct (ICBA) as the acceptor. It is found that ICBA can disturb π–π interactions of the crystalline ITIC-2Cl molecules in ternary blends and then help to form more uniform morphology. As a result, incorporation of 20% ICBA in the PBT1-C:ITIC-2Cl blend enables efficient charge dissociation, negligible bimolecular recombination, and balanced charge carrier mobilities. An impressive power conversion efficiency (PCE) of 13.4%, with a high fill factor (FF) of 76.8%, is eventually achieved, which represents one of the highest PCEs reported so far for organic solar cells. The results manifest that the adoption of amorphous fullerene acceptor is an effective approach to optimizing the ternary blend morphology and thereby increases the solar cell performance.

Original languageEnglish
Article number1803045
JournalAdvanced Materials
Issue number38
Publication statusPublished - 2018 Sept 20


  • ICBA
  • morphology
  • nonfullerene acceptor
  • organic solar cells
  • ternary structure

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Morphology Control Enables Efficient Ternary Organic Solar Cells'. Together they form a unique fingerprint.

Cite this