TY - GEN
T1 - Motor Imagery Classification of Single-Arm Tasks Using Convolutional Neural Network based on Feature Refining
AU - Lee, Byeong Hoo
AU - Jeong, Ji Hoon
AU - Shim, Kyung Hwan
AU - Kim, Dong Joo
N1 - Funding Information:
Research was partly supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00432, Development of Non-Invasive Integrated BCI SW Platform to Control Home Appliances and External Devices by User’s Thought via AR/VR Interface) and partly funded by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).
Publisher Copyright:
© 2020 IEEE.
PY - 2020/2
Y1 - 2020/2
N2 - Brain-computer interface (BCI) decodes brain signals to understand user intention and status. Because of its simple and safe data acquisition process, electroencephalogram (EEG) is commonly used in non-invasive BCI. One of EEG paradigms, motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin. However, the EEG signals are an oscillatory and non-stationary signal that makes it difficult to collect and classify MI accurately. In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) which is composed of two convolution blocks to achieve high classification accuracy. We collected EEG signals to create MI dataset contained the movement imagination of a single-arm. The proposed model outperforms conventional approaches in 4-class MI tasks classification. Hence, we demonstrate that the decoding of user intention is possible by using only EEG signals with robust performance using BFR-CNN.
AB - Brain-computer interface (BCI) decodes brain signals to understand user intention and status. Because of its simple and safe data acquisition process, electroencephalogram (EEG) is commonly used in non-invasive BCI. One of EEG paradigms, motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin. However, the EEG signals are an oscillatory and non-stationary signal that makes it difficult to collect and classify MI accurately. In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) which is composed of two convolution blocks to achieve high classification accuracy. We collected EEG signals to create MI dataset contained the movement imagination of a single-arm. The proposed model outperforms conventional approaches in 4-class MI tasks classification. Hence, we demonstrate that the decoding of user intention is possible by using only EEG signals with robust performance using BFR-CNN.
KW - brain-computer interface
KW - convoulutional neural network
KW - electroencephalogram
KW - motor imagery
UR - http://www.scopus.com/inward/record.url?scp=85084057484&partnerID=8YFLogxK
U2 - 10.1109/BCI48061.2020.9061632
DO - 10.1109/BCI48061.2020.9061632
M3 - Conference contribution
AN - SCOPUS:85084057484
T3 - 8th International Winter Conference on Brain-Computer Interface, BCI 2020
BT - 8th International Winter Conference on Brain-Computer Interface, BCI 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th International Winter Conference on Brain-Computer Interface, BCI 2020
Y2 - 26 February 2020 through 28 February 2020
ER -