Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network

Do Yeun Lee, Ji Hoon Jeong, Byeong Hoo Lee, Seong Whan Lee

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Highly sophisticated control based on a brain-computer interface (BCI) requires decoding kinematic information from brain signals. The forearm is a region of the upper limb that is often used in everyday life, but intuitive movements within the same limb have rarely been investigated in previous BCI studies. In this study, we focused on various forearm movement decoding from electroencephalography (EEG) signals using a small number of samples. Ten healthy participants took part in an experiment and performed motor execution (ME) and motor imagery (MI) of the intuitive movement tasks (Dataset I). We propose a convolutional neural network using a channel-wise variational autoencoder (CVNet) based on inter-task transfer learning. We approached that training the reconstructed ME-EEG signals together will also achieve more sufficient classification performance with only a small amount of MI-EEG signals. The proposed CVNet was validated on our own Dataset I and a public dataset, BNCI Horizon 2020 (Dataset II). The classification accuracies of various movements are confirmed to be 0.83 (±0.04) and 0.69 (±0.04) for Dataset I and II, respectively. The results show that the proposed method exhibits performance increases of approximately 0.090.27 and 0.080.24 compared with the conventional models for Dataset I and II, respectively. The outcomes suggest that the training model for decoding imagined movements can be performed using data from ME and a small number of data samples from MI. Hence, it is presented the feasibility of BCI learning strategies that can sufficiently learn deep learning with a few amount of calibration dataset and time only, with stable performance.

Original languageEnglish
Pages (from-to)226-237
Number of pages12
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Publication statusPublished - 2022

Bibliographical note

Funding Information:
This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant by the Korean Government under Grant 2017-0-00432, Grant 2017-0-00451, and Grant 2019-0-00079.

Publisher Copyright:
© 2001-2011 IEEE.


  • Brain-computer interface
  • deep learning
  • electroencephalogram
  • motor execution
  • motor imagery

ASJC Scopus subject areas

  • Internal Medicine
  • General Neuroscience
  • Biomedical Engineering
  • Rehabilitation


Dive into the research topics of 'Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network'. Together they form a unique fingerprint.

Cite this