Abstract
Classically activated pro-inflammatory macrophages are generated from naive macrophages by pro-inflammatory cues that dynamically reprogram their fuel metabolism toward glycolysis. This increases their intracellular reactive oxygen species (ROS) levels, which then activate the transcription and release of pro-inflammatory mediators. Our study on mice that lack methionine sulfoxide reductase (Msr)-B1 shows that the resulting partial loss of protein methionine reduction in pro-inflammatory macrophages creates a unique metabolic signature characterized by altered fuel utilization, including glucose and pyruvate. This change also associates with hyper-inflammation that is at least partly due to sustained oxidation of an exposed methionine residue (M44) on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), thereby inducing GAPDH aggregation, inflammasome activation, and subsequent increased interleukin (IL)-1β secretion. Since MsrB1-knockout mice exhibit increased susceptibility to lipopolysaccharide (LPS)-induced sepsis, the MsrB1-GAPDH axis may be a key molecular mechanism by which protein redox homeostasis controls the metabolic profile of macrophages and thereby regulates their functions.
Original language | English |
---|---|
Article number | 111598 |
Journal | Cell Reports |
Volume | 41 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2022 Nov 8 |
Bibliographical note
Publisher Copyright:© 2022 The Authors
Keywords
- CP: Metabolism
- GAPDH
- MsrB1
- ROS
- inflammasome
- macrophage
- metabolic reprogramming
- sepsis
ASJC Scopus subject areas
- General Biochemistry,Genetics and Molecular Biology