Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by loss of motor neurons. Dominant mutations in the gene for superoxide dismutase 1 (SOD1) give rise to familial ALS by an unknown mechanism. Here we show that genetic deficiency of mammalian sterile 20-like kinase 1 (MST1) delays disease onset and extends survival in mice expressing the ALS-Associated G93A mutant of human SOD1. SOD1(G93A) induces dissociation of MST1 from a redox protein thioredoxin-1 and promotes MST1 activation in spinal cord neurons in a reactive oxygen species-dependent manner. Moreover, MST1 was found to mediate SOD1(G93A)-induced activation of p38 mitogen-Activated protein kinase and caspases as well as impairment of autophagy in spinal cord motoneurons of SOD1(G93A) mice. Our findings implicate MST1 as a key determinant of neurodegeneration in ALS.
Original language | English |
---|---|
Pages (from-to) | 12066-12071 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 110 |
Issue number | 29 |
DOIs | |
Publication status | Published - 2013 Jul 16 |
Keywords
- Neurotoxicity
- ROS
ASJC Scopus subject areas
- General