Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production

Soo Jung Kim, Jung Eun Lee, Do Yup Lee, Haeseong Park, Kyoung Heon Kim, Yong Cheol Park

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this study, an evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production was characterized by multi-omic approaches. Genome sequencing of the HJ7-14 revealed a point mutation in the GAL83 gene (G703A) involved in the catabolite repression as well as the galactose metabolism. Cultural and transcriptional analyses of a S. cerevisiae mutant with chromosomal GAL83(G703A) indicated that the catabolite repression onto the galactose metabolism was considerably relieved in all cell growth stages. Untargeted metabolomic approach revealed that metabolic phenotypes between the control D452-2 and HJ7-14 strains were clearly discriminated in time-dependent manner. Especially in early growth stage at 6 h, the HJ7-14 showed dramatic and coordinated alteration in central carbon and amino acid metabolisms. Through metabolomic re-organization, fold changes in fatty acid metabolism and metabolites related to stress response system were also found upon glucose depletion and active galactose utilization. Multi-omic characterization using genome sequencing, transcription, and metabolome profiling clearly unveiled that the GAL83 gene mutation partially relieved glucose-dependent catabolite repression and allowed the evolved HJ7-14 to efficiently convert algal sugars to ethanol. Our finding could be applicable for engineering of S. cerevisiae able to covert red algal biomass to other biofuels and biochemicals.

Original languageEnglish
Pages (from-to)8989-9002
Number of pages14
JournalApplied Microbiology and Biotechnology
Volume102
Issue number20
DOIs
Publication statusPublished - 2018 Oct 1

Bibliographical note

Funding Information:
Funding This work was financially supported by the National Research Foundation of Korea (NRF) Grant (2016R1A2B4010842); by the Korean Ministry of Science, ICT, and Future Planning; and also by the R&D Program of MOTIE/KEIT (10049675) and MOTIE/KIAT (R0004073).

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Algal sugars
  • Catabolite de-repression
  • Ethanol
  • GAL83
  • Multi-omics
  • Saccharomyces cerevisiae

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production'. Together they form a unique fingerprint.

Cite this