Abstract
Accurate bone segmentation and anatomical landmark localization are essential tasks in computer-aided surgical simulation for patients with craniomaxillofacial (CMF) deformities. To leverage the complementarity between the two tasks, we propose an efficient end-to-end deep network, i.e., multi-task dynamic transformer network (DTNet), to concurrently segment CMF bones and localize large-scale landmarks in one-pass from large volumes of cone-beam computed tomography (CBCT) data. Our DTNet was evaluated quantitatively using CBCTs of patients with CMF deformities. The results demonstrated that our method outperforms the other state-of-the-art methods in both tasks of the bony segmentation and the landmark digitization. Our DTNet features three main technical contributions. First, a collaborative two-branch architecture is designed to efficiently capture both fine-grained image details and complete global context for high-resolution volume-to-volume prediction. Second, leveraging anatomical dependencies between landmarks, regionalized dynamic learners (RDLs) are designed in the concept of “learns to learn” to jointly regress large-scale 3D heatmaps of all landmarks under limited computational costs. Third, adaptive transformer modules (ATMs) are designed for the flexible learning of task-specific feature embedding from common feature bases.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Editors | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 807-816 |
Number of pages | 10 |
ISBN (Print) | 9783030597184 |
DOIs | |
Publication status | Published - 2020 |
Event | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru Duration: 2020 Oct 4 → 2020 Oct 8 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12264 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Country/Territory | Peru |
City | Lima |
Period | 20/10/4 → 20/10/8 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Craniomaxillofacial (CMF)
- Landmark localization
- Multi-task learning
- Segmentation
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science