Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals

Guan Yu, Yufeng Liu, Kim Han Thung, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

Original languageEnglish
Article numbere96458
JournalPloS one
Volume9
Issue number5
DOIs
Publication statusPublished - 2014 May 12

Bibliographical note

Funding Information:
Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) National Institutes of Health Grant U01 AG024904. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Amorfix, Bayer Schering Pharma AG, Bioclinica Inc., Biogen Idec, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, Innogenetics, IXICO, Janssen Alzheimer Immunotherapy, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Meso Scale Diagnostic, & LLC, Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Servier, Synarc, Inc., and Takeda Pharmaceuticals, as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health. The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals'. Together they form a unique fingerprint.

Cite this