Multi-view classification for identification of Alzheimer’s disease

Xiaofeng Zhu, Heung Il Suk, Yonghua Zhu, Kim Han Thung, Guorong Wu, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

35 Citations (Scopus)

Abstract

In this paper, we propose a multi-view learning method using Magnetic Resonance Imaging (MRI) data for Alzheimer’s Disease (AD) diagnosis. Specifically, we extract both Region-Of-Interest (ROI) features and Histograms of Oriented Gradient (HOG) features from each MRI image, and then propose mapping HOG features onto the space of ROI features to make them comparable and to impose high intra-class similarity with low inter-class similarity. Finally, both mapped HOG features and original ROI features are input to the support vector machine for AD diagnosis. The purpose of mapping HOG features onto the space of ROI features is to provide complementary information so that features from different views can not only be comparable (i.e., homogeneous) but also be interpretable. For example, ROI features are robust to noise, but lack of reflecting small or subtle changes, while HOG features are diverse but less robust to noise. The proposed multi-view learning method is designed to learn the transformation between two spaces and to separate the classes under the supervision of class labels. The experimental results on the MRI images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show that the proposed multi-view method helps enhance disease status identification performance, outperforming both baseline methods and state-of-the-art methods.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 6th International Workshop, MLMI 2015 Held in Conjunction with MICCAI 2015, Proceedings
EditorsLuping Zhou, Yinghuan Shi, Li Wang, Qian Wang
PublisherSpringer Verlag
Pages255-262
Number of pages8
ISBN (Print)9783319248875
DOIs
Publication statusPublished - 2015
Event6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015 and Held in Conjunction with 18th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: 2015 Oct 52015 Oct 5

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9352
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015 and Held in Conjunction with 18th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2015
Country/TerritoryGermany
CityMunich
Period15/10/515/10/5

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Multi-view classification for identification of Alzheimer’s disease'. Together they form a unique fingerprint.

Cite this