Multi-view classification for identification of Alzheimer’s disease

Xiaofeng Zhu, Heung Il Suk, Yonghua Zhu, Kim Han Thung, Guorong Wu, Dinggang Shen

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    40 Citations (Scopus)

    Abstract

    In this paper, we propose a multi-view learning method using Magnetic Resonance Imaging (MRI) data for Alzheimer’s Disease (AD) diagnosis. Specifically, we extract both Region-Of-Interest (ROI) features and Histograms of Oriented Gradient (HOG) features from each MRI image, and then propose mapping HOG features onto the space of ROI features to make them comparable and to impose high intra-class similarity with low inter-class similarity. Finally, both mapped HOG features and original ROI features are input to the support vector machine for AD diagnosis. The purpose of mapping HOG features onto the space of ROI features is to provide complementary information so that features from different views can not only be comparable (i.e., homogeneous) but also be interpretable. For example, ROI features are robust to noise, but lack of reflecting small or subtle changes, while HOG features are diverse but less robust to noise. The proposed multi-view learning method is designed to learn the transformation between two spaces and to separate the classes under the supervision of class labels. The experimental results on the MRI images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show that the proposed multi-view method helps enhance disease status identification performance, outperforming both baseline methods and state-of-the-art methods.

    Original languageEnglish
    Title of host publicationMachine Learning in Medical Imaging - 6th International Workshop, MLMI 2015 Held in Conjunction with MICCAI 2015, Proceedings
    EditorsLuping Zhou, Yinghuan Shi, Li Wang, Qian Wang
    PublisherSpringer Verlag
    Pages255-262
    Number of pages8
    ISBN (Print)9783319248875
    DOIs
    Publication statusPublished - 2015
    Event6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015 and Held in Conjunction with 18th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2015 - Munich, Germany
    Duration: 2015 Oct 52015 Oct 5

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume9352
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Other

    Other6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015 and Held in Conjunction with 18th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2015
    Country/TerritoryGermany
    CityMunich
    Period15/10/515/10/5

    Bibliographical note

    Publisher Copyright:
    © Springer International Publishing Switzerland 2015.

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Multi-view classification for identification of Alzheimer’s disease'. Together they form a unique fingerprint.

    Cite this