TY - JOUR
T1 - Multicolor Tunable Upconversion Luminescence from Sensitized Seed-Mediated Grown LiGdF4:Yb,Tm-Based Core/Triple-Shell Nanophosphors for Transparent Displays
AU - Shin, Jeehae
AU - Kyhm, Ji Hoon
AU - Hong, A. Ra
AU - Song, Jin Dong
AU - Lee, Kwangyeol
AU - Ko, Hyungduk
AU - Jang, Ho Seong
N1 - Funding Information:
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A2B5A03023239), Future Key Technology Program (project no. 2E28020) by the Korea Institute of Science and Technology, and a grant from the Bio and Medical Technology Development Programs (NRF-2016M3A9B6902060) through the Ministry of Science, ICT, and Future Planning.
Publisher Copyright:
Copyright © 2018 American Chemical Society.
PY - 2018/12/11
Y1 - 2018/12/11
N2 - Red, green, blue, and natural white upconversion (UC) luminescence colors are realized from the tetragonal-structured LiGdF4-based core/triple-shell (C/T-S) upconversion nanophosphors (UCNPs) and the C/T-S UCNP-incorporated polymer composites. The LiYF4:Yb cores are used as sensitized seeds for the formation of LiGdF4:Yb,Tm UC shell followed by the growth of LiGdF4:Tb,Eu color tuning shell. Finally, LiYF4 inert shell is grown on the core/shell/shell UCNPs, and LiYF4:Yb/LiGdF4:Yb,Tm/LiGdF4:Tb,Eu/LiYF4 C/T-S UCNPs exhibit enhanced UC luminescence. The single tetragonal-phased C/T-S UCNPs exhibit blue, green, and red UC luminescence, which is attributed to the electronic transitions in Tm3+ via energy transfer UC process and Tb3+ and Eu3+ via energy migration UC process, respectively. The multicolor UC emissions, including natural white, medium aquamarine, purple, and thistle color, are created by fine-tuning of the ratio of Tb3+ and Eu3+ in the color tuning shell. The transparent polymer composites are prepared by incorporating the C/T-S UCNPs into polydimethylsiloxane, and the polymer composites also exhibit red, green, blue, and natural white light UC emissions, indicating that these multicolor tunable LiYF4:Yb/LiGdF4:Yb,Tm/LiGdF4:Tb,Eu/LiYF4 C/T-S UCNPs have potential to be applied to transparent volumetric displays.
AB - Red, green, blue, and natural white upconversion (UC) luminescence colors are realized from the tetragonal-structured LiGdF4-based core/triple-shell (C/T-S) upconversion nanophosphors (UCNPs) and the C/T-S UCNP-incorporated polymer composites. The LiYF4:Yb cores are used as sensitized seeds for the formation of LiGdF4:Yb,Tm UC shell followed by the growth of LiGdF4:Tb,Eu color tuning shell. Finally, LiYF4 inert shell is grown on the core/shell/shell UCNPs, and LiYF4:Yb/LiGdF4:Yb,Tm/LiGdF4:Tb,Eu/LiYF4 C/T-S UCNPs exhibit enhanced UC luminescence. The single tetragonal-phased C/T-S UCNPs exhibit blue, green, and red UC luminescence, which is attributed to the electronic transitions in Tm3+ via energy transfer UC process and Tb3+ and Eu3+ via energy migration UC process, respectively. The multicolor UC emissions, including natural white, medium aquamarine, purple, and thistle color, are created by fine-tuning of the ratio of Tb3+ and Eu3+ in the color tuning shell. The transparent polymer composites are prepared by incorporating the C/T-S UCNPs into polydimethylsiloxane, and the polymer composites also exhibit red, green, blue, and natural white light UC emissions, indicating that these multicolor tunable LiYF4:Yb/LiGdF4:Yb,Tm/LiGdF4:Tb,Eu/LiYF4 C/T-S UCNPs have potential to be applied to transparent volumetric displays.
UR - http://www.scopus.com/inward/record.url?scp=85057043827&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.8b02497
DO - 10.1021/acs.chemmater.8b02497
M3 - Article
AN - SCOPUS:85057043827
SN - 0897-4756
VL - 30
SP - 8457
EP - 8464
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 23
ER -