TY - JOUR
T1 - Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries
AU - Park, Jin Sung
AU - Chan Kang, Yun
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2015R1A2A1A15056049).
Publisher Copyright:
© 2017 The Royal Society of Chemistry.
PY - 2017
Y1 - 2017
N2 - Unique-structured MoS2-Ni9S8-C, MoSe2-NiSe-C, MoS2-Ni9S8, and MoSe2-NiSe-NiSe2 composite microspheres were prepared by pilot-scale spray drying and a subsequent post-treatment process. Dextrin, used as the carbon source, played a key role in the formation of unique-structured multicomponent metal sulfide and selenide microspheres with and without carbon. The empty nanovoids formed by decomposition (or carbonization) of phase-separated dextrin during the spray drying process were uniformly distributed within the multicomponent metal sulfide and selenide composite microspheres. The discharge capacities of MoS2-Ni9S8-C, MoSe2-NiSe-C, MoS2-Ni9S8, and MoSe2-NiSe-NiSe2 for the 80th cycle at a current density of 0.5 A g-1 for sodium-ion storage were 366, 386, 459, and 291 mA h g-1, respectively, and the respective capacity retentions measured from the second cycle were 91, 102, 92, and 64%. The carbon-free MoS2-Ni9S8 microspheres exhibited excellent rate performance and their discharge capacities decreased slightly from 559 to 428 mA h g-1 as the current densities increased from 0.1 to 3 A g-1. The MoS2-Ni9S8-C composite microspheres, with high structural stability during repeated sodium-ion insertion and deinsertion, showed extremely long-term cycling performance for 1000 cycles.
AB - Unique-structured MoS2-Ni9S8-C, MoSe2-NiSe-C, MoS2-Ni9S8, and MoSe2-NiSe-NiSe2 composite microspheres were prepared by pilot-scale spray drying and a subsequent post-treatment process. Dextrin, used as the carbon source, played a key role in the formation of unique-structured multicomponent metal sulfide and selenide microspheres with and without carbon. The empty nanovoids formed by decomposition (or carbonization) of phase-separated dextrin during the spray drying process were uniformly distributed within the multicomponent metal sulfide and selenide composite microspheres. The discharge capacities of MoS2-Ni9S8-C, MoSe2-NiSe-C, MoS2-Ni9S8, and MoSe2-NiSe-NiSe2 for the 80th cycle at a current density of 0.5 A g-1 for sodium-ion storage were 366, 386, 459, and 291 mA h g-1, respectively, and the respective capacity retentions measured from the second cycle were 91, 102, 92, and 64%. The carbon-free MoS2-Ni9S8 microspheres exhibited excellent rate performance and their discharge capacities decreased slightly from 559 to 428 mA h g-1 as the current densities increased from 0.1 to 3 A g-1. The MoS2-Ni9S8-C composite microspheres, with high structural stability during repeated sodium-ion insertion and deinsertion, showed extremely long-term cycling performance for 1000 cycles.
UR - http://www.scopus.com/inward/record.url?scp=85021627923&partnerID=8YFLogxK
U2 - 10.1039/c7ta01088e
DO - 10.1039/c7ta01088e
M3 - Article
AN - SCOPUS:85021627923
SN - 2050-7488
VL - 5
SP - 8616
EP - 8623
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 18
ER -