Multimodal integration of electrophysiological and hemodynamic signals

Sven Dähne, Felix Bießmann, Frank C. Meinecke, Jan Mehnert, Siamac Fazli, Klaus Robert Müller

Research output: Contribution to conferencePaperpeer-review

4 Citations (Scopus)

Abstract

The urge to further our understanding of multimodal neural data has recently become an important topic due to the ever increasing availability of simultaneously recorded data from different neural imaging modalities. In case where the electroencephalogram (EEG) is one of the measurement modalities, it is of interest to relate a nonlinear function of the raw EEG time-domain signal, namely the dynamics of EEG bandpower, to another modality such as the hemodynamic response, as measured with near-infrared spectroscopy (NIRS) or functional magnetic resonance imaging (fMRI). In this work we tackle exactly this problem by defining a novel algorithm that we denote multimodal source power correlation analysis (mSPoC). The validity of the mSPoC approach is demonstrated for real-world multimodal data, obtained from a Brain-Computer Interface experiment, where mSPoC's ability to recover common sources from multimodal measurements is contrasted against an existing state-of-art approach represented by canonical correlation analysis (CCA).

Original languageEnglish
DOIs
Publication statusPublished - 2014
Event2014 International Winter Workshop on Brain-Computer Interface, BCI 2014 - Gangwon, Korea, Republic of
Duration: 2014 Feb 172014 Feb 19

Other

Other2014 International Winter Workshop on Brain-Computer Interface, BCI 2014
Country/TerritoryKorea, Republic of
CityGangwon
Period14/2/1714/2/19

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Human Factors and Ergonomics

Fingerprint

Dive into the research topics of 'Multimodal integration of electrophysiological and hemodynamic signals'. Together they form a unique fingerprint.

Cite this