TY - GEN
T1 - Multiple-network classification of childhood autism using functional connectivity dynamics
AU - Price, True
AU - Wee, Chong Yaw
AU - Gao, Wei
AU - Shen, Dinggang
PY - 2014
Y1 - 2014
N2 - Characterization of disease using stationary resting-state functional connectivity (FC) has provided important hallmarks of abnormal brain activation in many domains. Recent studies of resting-state functional magnetic resonance imaging (fMRI), however, suggest there is a considerable amount of additional knowledge to be gained by investigating the variability in FC over the course of a scan. While a few studies have begun to explore the properties of dynamic FC for characterizing disease, the analysis of dynamic FC over multiple networks at multiple time scales has yet to be fully examined. In this study, we combine dynamic connectivity features in a multi-network, multi-scale approach to evaluate the method's potential in better classifying childhood autism. Specifically, from a set of group-level intrinsic connectivity networks (ICNs), we use sliding window correlations to compute intra-network connectivity on the subject level. We derive dynamic FC features for all ICNs over a large range of window sizes and then use a multiple kernel support vector machine (MK-SVM) model to combine a subset of these features for classification. We compare the performance our multi-network, dynamic approach to the best results obtained from single-network dynamic FC features and those obtained from both single- and multi-network static FC features. Our experiments show that integrating multiple networks on different dynamic scales has a clear superiority over these existing methods.
AB - Characterization of disease using stationary resting-state functional connectivity (FC) has provided important hallmarks of abnormal brain activation in many domains. Recent studies of resting-state functional magnetic resonance imaging (fMRI), however, suggest there is a considerable amount of additional knowledge to be gained by investigating the variability in FC over the course of a scan. While a few studies have begun to explore the properties of dynamic FC for characterizing disease, the analysis of dynamic FC over multiple networks at multiple time scales has yet to be fully examined. In this study, we combine dynamic connectivity features in a multi-network, multi-scale approach to evaluate the method's potential in better classifying childhood autism. Specifically, from a set of group-level intrinsic connectivity networks (ICNs), we use sliding window correlations to compute intra-network connectivity on the subject level. We derive dynamic FC features for all ICNs over a large range of window sizes and then use a multiple kernel support vector machine (MK-SVM) model to combine a subset of these features for classification. We compare the performance our multi-network, dynamic approach to the best results obtained from single-network dynamic FC features and those obtained from both single- and multi-network static FC features. Our experiments show that integrating multiple networks on different dynamic scales has a clear superiority over these existing methods.
UR - http://www.scopus.com/inward/record.url?scp=84906977910&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-10443-0_23
DO - 10.1007/978-3-319-10443-0_23
M3 - Conference contribution
C2 - 25320797
AN - SCOPUS:84906977910
SN - 9783319104423
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 177
EP - 184
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings
PB - Springer Verlag
T2 - 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Y2 - 14 September 2014 through 18 September 2014
ER -