Abstract
We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups.
Original language | English |
---|---|
Article number | 608 |
Journal | Nanoscale Research Letters |
Volume | 7 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Bibliographical note
Funding Information:This work is supported by the National Research Foundation (NRF) of Korea (under grant nos. NRF-2010-0009428, 2010–0027238, 2011–0009885, and 2012R1A2A2A04047240).
Keywords
- Atomic force microscopy
- Au nanoparticle
- Dopamine
- Lateral force microscopy
- Surface chemistry
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics