Abstract
Electrochemical metallization-based threshold switching devices with active metal electrodes have been studied as a selector for high-density resistive random access memory (RRAM) technology in crossbar array architectures. However, these devices are not suitable for integration with three-dimensional (3D) crossbar RRAM arrays due to the difficulty in vertical stacking and/or scaling into the nanometer regime as well as the asymmetric threshold switching behavior and large variation in the operating voltage. Here, we demonstrate bidirectional symmetric threshold switching behaviors from a simple Pt/Ag-doped HfOx/Pt structure. While fabricating the Pt/Ag-doped HfOx/Pt film using a 250 nm hole structure, filaments composed of Ag nanoclusters were constructed through a low-temperature (∼200 °C) hydrogen annealing process where the shape of the film in a nanoscale via a hole structure was maintained for integration with 3D stackable crossbar RRAM arrays. Finite Ag filament paths in the HfOx layer led to uniform device-to-device performances. Moreover, we observed that the hydrogen annealing process reduced the delay time through the reduction of the oxygen vacancies in the HfOx layer. Consequently, the proposed Pt/Ag-doped HfOx/Pt-based nanoscale selector devices exhibited excellent performance of high selectivity (∼105), ultralow OFF current (∼10 pA), steep turn-on slope (∼2 mV/decade), and short delay time (3 μs).
Original language | English |
---|---|
Pages (from-to) | 29408-29415 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 32 |
DOIs | |
Publication status | Published - 2019 Aug 14 |
Keywords
- crossbar array
- nonvolatile memory
- resistive switching
- selector device
- threshold switching
ASJC Scopus subject areas
- Materials Science(all)