Abstract
We have developed Near-infrared (NIR)-sensitive heterojunction cells consisting of n-type PbS colloidal quantum dots (CQDs) (low bandgap) anchored on the nanoporous TiO2 (np-TiO2, high-bandgap), and p-type spiro-OMeTAD (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene). In these cells, an n-type np-TiO2 layer acts both as a host that chemically binds to the PbS CQDs and as an electron carrier. The number of PbS CQDs loaded onto the np-TiO2 layer not only increases the external quantum efficiency (EQE) but also reduces the response time in the NIR region. The performance of these devices increased upon the introduction of a TiOx layer between the PbS CQDs and spiro-OMeTAD followed by heat treatment at 110 °C for 1 min.
Original language | English |
---|---|
Pages (from-to) | 696-699 |
Number of pages | 4 |
Journal | Organic Electronics |
Volume | 11 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2010 Apr |
Externally published | Yes |
Keywords
- Near-infrared
- Organic hole conductor
- PbS colloidal quantum dots
- Photodetection
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Chemistry(all)
- Condensed Matter Physics
- Materials Chemistry
- Electrical and Electronic Engineering