Abstract
Neural stem cells (NSCs) in the embryonic neocortex have the potential to generate a well-organized laminar architecture of the cerebral cortex through precise regulation of the proliferation, differentiation, and migration of neural cells. NSCs can be isolated in vitro and expanded as cell clusters, called neurospheres, which are primarily related to the proliferation ability of NSCs. Conversely, the tissue-organizing properties of NSCs via regulated differentiation and migration of the cells are not well understood. In this study, we established a three-dimensional (3D) differentiation model of neurospheres, which produce unique neuronal clusters, termed NeuroCore (NC). NC formation was initiated by the aggregation of young neurons. Upon maturation of the neurons and the establishment of radial glia-like structures, the initial organization of the NCs transformed into a glomeruli-like arrangement of cortical neurons. These neurons expressed multiple markers of upper and deep cortical neurons. Taken together, we propose that NSCs in vitro maintain some aspects of their original in vivo tissue-organizing properties, providing an alternative opportunity to explore the fundamental components of brain histogenesis in vitro.
Original language | English |
---|---|
Article number | 101691 |
Journal | Stem Cell Research |
Volume | 43 |
DOIs | |
Publication status | Published - 2020 Mar |
Bibliographical note
Funding Information:This research was supported by the Brain Research Program through the National Research Foundation (NRF) which was funded by the Korean Ministry of Science , the ICT & Future Planning ( NRF-2017M3A9B3061308 , NRF-2017M3C7A1047654 and NRF-2019M3E5D2A01063939 ).
Publisher Copyright:
© 2020 The Authors
Keywords
- Differentiation
- Neocortex
- Neural stem cell
- Neurosphere
ASJC Scopus subject areas
- Developmental Biology
- Cell Biology