Abstract
Neutron radiation effects were studied in undoped n-GaN films grown by epitaxial lateral overgrowth (ELOG). The irradiation leads to carrier removal and introduces deep electron traps with activation energy 0.8 eV and 1 eV. After the application of doses exceeding 10 17 cm -2, the material becomes semi-insulating n-type, with the Fermi level pinned near the level of the deeper electron trap. These features are similar to those previously observed for neutron irradiated undoped n-GaN prepared by standard metal-organic chemical vapor deposition (MOCVD). However, the average carrier removal rate and the deep center introduction rate in ELOG samples is about five-times lower than in MOCVD samples. Studies of electron beam induced current (EBIC) show that the changes in the concentration of charged centers are a minimum in the low-dislocation-density laterally overgrown regions and radiation-induced damage propagates inside these laterally overgrown areas from their boundary with the high-dislocation-density GaN in the windows of the ELOG mask.
Original language | English |
---|---|
Pages (from-to) | 1320-1325 |
Number of pages | 6 |
Journal | Journal of Electronic Materials |
Volume | 36 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2007 Oct |
Externally published | Yes |
Keywords
- ELOG
- GaN
- Neutron irradiation
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering
- Materials Chemistry