Abstract
A model of Newtonian glass fiber drawing at fixed temperature in the unsteady range (the draw ratio E>20.22) is considered. In this range under steady boundary conditions, as is well known, the draw resonance instability sets in, resulting in self-sustained oscillations. These oscillations lead to a periodic variation of the cross-sectional radius of the fiber. In the present work we consider the case where the spinline radius varies periodically. Such a variation may result from flow oscillations in the fiber forming channels in the direct-melt process, or from the variation of the preform cross-sectional radius in drawing of optical fibers. When this variation takes place in the range E >20.22, the self-sustained periodic oscillations of the draw resonance are replaced by quasiperiodic and periodic (mode-locked) subharmonic or (under the appropriate conditions) chaotic oscillations (strange attractors). The routes to chaos found in the present work include (1) smooth period doubling bifurcation of (any) mode-locked periodic solution, (2) abrupt explosions of quasiperiodic solutions. The predicted chaotic variation of the spinline radius at the winding mandrel may result in a similar variation of the cross-sectional radius of the solidified fibers.
Original language | English |
---|---|
Pages (from-to) | 3201-3208 |
Number of pages | 8 |
Journal | Physics of Fluids |
Volume | 11 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1999 Nov |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes