TY - JOUR
T1 - Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation
AU - Bang, S.
AU - Yoo, S.
AU - Yang, T. J.
AU - Cho, H.
AU - Hwang, S. W.
PY - 2012/6
Y1 - 2012/6
N2 - BACKGROUND AND PURPOSE Sensory neuronal and epidermal transient receptor potential ion channels (TRPs) serve an important role as pain sensor molecules. While many natural and synthetic ligands for sensory TRPs have been identified, little is known about the endogenous activator for TRPV4. Recently, we reported that endogenous metabolites produced by the mevalonate pathway regulate the activities of sensory neuronal TRPs. Here, we show that dimethylallyl pyrophosphate (DMAPP), a substance produced by the same pathway is an activator of TRPV4. EXPERIMENTAL APPROACH We examined the effects of DMAPP on sensory TRPs using Ca 2+ imaging and whole-cell electrophysiology experiments with a heterologous expression system (HEK293T cells transfected with individual TRP channels), cultured sensory neurons and keratinocytes. We then evaluated nociceptive behavioural and inflammatory changes upon DMAPP administration in mice in vivo. KEY RESULTS In the HEK cell heterologous expression system, cultured sensory neurons and keratinocytes, μM concentrations of DMAPP activated TRPV4. Agonistic and antagonistic potencies of DMAPP for other sensory TRP channels were examined and activation of TRPV3 by camphor was found to be inhibited by DMAPP. In vivo assays, intraplantar injection of DMAPP acutely elicited nociceptive flinches that were prevented by pretreatment with TRPV4 blockers, indicating that DMAPP is a novel pain-producing molecule through TRPV4 activation. Further, DMAPP induced acute inflammation and noxious mechanical hypersensitivities in a TRPV4-dependent manner. CONCLUSIONS AND IMPLICATIONS Overall, we found a novel sensory TRP acting metabolite and suggest that its use may help to elucidate the physiological role of TRPV4 in nociception and associated inflammation.
AB - BACKGROUND AND PURPOSE Sensory neuronal and epidermal transient receptor potential ion channels (TRPs) serve an important role as pain sensor molecules. While many natural and synthetic ligands for sensory TRPs have been identified, little is known about the endogenous activator for TRPV4. Recently, we reported that endogenous metabolites produced by the mevalonate pathway regulate the activities of sensory neuronal TRPs. Here, we show that dimethylallyl pyrophosphate (DMAPP), a substance produced by the same pathway is an activator of TRPV4. EXPERIMENTAL APPROACH We examined the effects of DMAPP on sensory TRPs using Ca 2+ imaging and whole-cell electrophysiology experiments with a heterologous expression system (HEK293T cells transfected with individual TRP channels), cultured sensory neurons and keratinocytes. We then evaluated nociceptive behavioural and inflammatory changes upon DMAPP administration in mice in vivo. KEY RESULTS In the HEK cell heterologous expression system, cultured sensory neurons and keratinocytes, μM concentrations of DMAPP activated TRPV4. Agonistic and antagonistic potencies of DMAPP for other sensory TRP channels were examined and activation of TRPV3 by camphor was found to be inhibited by DMAPP. In vivo assays, intraplantar injection of DMAPP acutely elicited nociceptive flinches that were prevented by pretreatment with TRPV4 blockers, indicating that DMAPP is a novel pain-producing molecule through TRPV4 activation. Further, DMAPP induced acute inflammation and noxious mechanical hypersensitivities in a TRPV4-dependent manner. CONCLUSIONS AND IMPLICATIONS Overall, we found a novel sensory TRP acting metabolite and suggest that its use may help to elucidate the physiological role of TRPV4 in nociception and associated inflammation.
KW - TRPV4
KW - dimethylallyl pyrophosphate
KW - keratinocyte
KW - pain
KW - sensory neuron
UR - http://www.scopus.com/inward/record.url?scp=84861303511&partnerID=8YFLogxK
U2 - 10.1111/j.1476-5381.2012.01884.x
DO - 10.1111/j.1476-5381.2012.01884.x
M3 - Article
C2 - 22300296
AN - SCOPUS:84861303511
SN - 0007-1188
VL - 166
SP - 1433
EP - 1443
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 4
ER -