Abstract
It is challenging to remove the physiological noise that is not evoked by the brain activity in fNIRS signals. We propose a novel method to effectively remove the superficial noise in the hemodynamic signals by combining an extended Kalman filter (EKF) with a short separation measurement based on a nonlinear balloon model. To demonstrate the improved performances of the proposed method over the existing linear Kalman filter (LKF), we use a synthetic hemodynamic signal to compare. As a result, the proposed EKF recovers the modeled hemodynamic responses with lower errors and higher correlation than the LKF.
Original language | English |
---|---|
Title of host publication | 2018 6th International Conference on Brain-Computer Interface, BCI 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-3 |
Number of pages | 3 |
Volume | 2018-January |
ISBN (Electronic) | 9781538625743 |
DOIs | |
Publication status | Published - 2018 Mar 9 |
Event | 6th International Conference on Brain-Computer Interface, BCI 2018 - GangWon, Korea, Republic of Duration: 2018 Jan 15 → 2018 Jan 17 |
Other
Other | 6th International Conference on Brain-Computer Interface, BCI 2018 |
---|---|
Country/Territory | Korea, Republic of |
City | GangWon |
Period | 18/1/15 → 18/1/17 |
Keywords
- adaptive filtering
- extended Kalman filter
- fNIRS
- noise reduction
ASJC Scopus subject areas
- Artificial Intelligence
- Human-Computer Interaction
- Behavioral Neuroscience