Abstract
In wireless multimedia cognitive radio networks (WMCRNs), to optimize multimedia transmissions and scarce wireless spectrum utilization, a multimedia secondary user (MSU) needs to estimate and/or identify the achievable quality of service (QoS)-levels over the available licensed channels. However, due to the lack of signaling information among MSUs and the primary users (PUs) in uncoordinated environments, identification of the achievable QoS-levels on the available licensed channels is a challenging problem and has not yet been fully explored. To address this challenge, we propose a novel NOn-parametric Bayesian channEls cLustering (NOBEL) scheme. In NOBEL, an infinite Gaussian mixture model-based collapsed Gibbs sampler is adopted to identify the achievable QoS-levels over the feature space, i.e., bitrate, packet delay variation, and packet delivery ratio on the PUs' licensed channels. Real trace-driven evaluation results demonstrate that NOBEL outperforms other baseline clustering techniques and guarantee high accuracy from 98% to 99.5%.
Original language | English |
---|---|
Article number | 8792138 |
Pages (from-to) | 2293-2305 |
Number of pages | 13 |
Journal | IEEE Journal on Selected Areas in Communications |
Volume | 37 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2019 Oct |
Bibliographical note
Publisher Copyright:© 1983-2012 IEEE.
Keywords
- QoS-level quantification
- Wireless multimedia applications
- channel clustering
- multi-channel
- multimedia CRNs
ASJC Scopus subject areas
- Computer Networks and Communications
- Electrical and Electronic Engineering