Non-preemptive priority M/M/m queue with servers’ vacations

Bara Kim, Jeongsim Kim, Ole Bueker

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

We consider a non-preemptive priority M/M/m queue with two classes of customers and multiple vacations. Service times for all customers are exponentially distributed with the same mean, and vacation times follow an exponential distribution. We obtain the vector probability generating function for the stationary distribution of the number of customers in the queue for each class. This is established by deriving a matrix equation for the vector probability generating function of the stationary distribution of the censored Markov process and then studying the analytical properties of the matrix generating function. We also obtain exact expressions for the first two moments of the number of customers in the queue for each class. Finally, as an application, we investigate a customer's equilibrium strategy and the optimal priority fee associated with social cost minimization for an unobservable M/M/m queue with two priority classes and multiple vacations.

Original languageEnglish
Article number107390
JournalComputers and Industrial Engineering
Volume160
DOIs
Publication statusPublished - 2021 Oct

Bibliographical note

Funding Information:
B. Kim’s research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2B5B01001864 ). J. Kim’s research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01065568 ).

Publisher Copyright:
© 2021 Elsevier Ltd

Keywords

  • Censored markov process
  • Equilibrium strategy
  • Non-preemptive priority queue
  • Server vacation
  • Social cost

ASJC Scopus subject areas

  • General Computer Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Non-preemptive priority M/M/m queue with servers’ vacations'. Together they form a unique fingerprint.

Cite this