TY - JOUR
T1 - Numerical studies on the effects of stagnation pressure and temperature on supersonic flow characteristics in cold spray applications
AU - Lee, Min Wook
AU - Park, Jung Jae
AU - Kim, Do Yeon
AU - Yoon, Sam S.
AU - Kim, Ho Young
AU - James, Scott C.
AU - Chandra, Sanjeev
AU - Coyle, Thomas
N1 - Funding Information:
This study was supported by the New & Renewable Energy Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP, 2010-3010010011) grant and Technology Innovation Program (KETEP, 10035397-2010-01). The corresponding author also acknowledges that a partial support was made for this project by the NRF Grant of Korea (2010-0010217 and 2011-0007182).
PY - 2011/9
Y1 - 2011/9
N2 - Low-temperature particle coating requires supersonic flow. The characteristics of this supersonic flow are investigated using a nonlinear turbulence model. The low-temperature, supersonic particle deposition technique is valuable because its rapid and dense coating minimizes thermal damage to both particles and substrate. It has excellent potential for industrial production of low-cost thin films. Stagnation pressures and temperatures of the supersonic nozzle range from 4 < P o < 45 bar and 300 < T o < 1500 K, respectively. The exit Mach number, M e, and velocity, V e, range from 0.6 to 3.5 and 200 to 1400 m/s, respectively. The effects of stagnation pressure (P o) and stagnation temperature (T o) on supersonic flow impinging upon a substrate are described. In other words, the energy loss through shockwaves and shear interactions between the streaming jet and surrounding gas are quantified as functions of P o and T o. P o is decreased because of friction (loss ranges from 40 to 60%) while T o is nearly conserved. To realize the nozzle exit condition of P e = P amb, we demonstrate that P o should be adjusted rather than T o, as T o has little effect on exit pressures. On the other hand, T o is more influential than P o for varying the exit velocity. Various nozzle geometries yielding different flow characteristics, and hence, different operating conditions and coating performances are investigated. The corresponding supersonic flows for three types of nozzles (under-, correctly, and over-expanded) are simulated, and their correctly expanded (or shock-free) operating conditions are identified. Diamond shock structures induced by the pressure imbalance between the exiting gas and the surrounding atmosphere are captured.
AB - Low-temperature particle coating requires supersonic flow. The characteristics of this supersonic flow are investigated using a nonlinear turbulence model. The low-temperature, supersonic particle deposition technique is valuable because its rapid and dense coating minimizes thermal damage to both particles and substrate. It has excellent potential for industrial production of low-cost thin films. Stagnation pressures and temperatures of the supersonic nozzle range from 4 < P o < 45 bar and 300 < T o < 1500 K, respectively. The exit Mach number, M e, and velocity, V e, range from 0.6 to 3.5 and 200 to 1400 m/s, respectively. The effects of stagnation pressure (P o) and stagnation temperature (T o) on supersonic flow impinging upon a substrate are described. In other words, the energy loss through shockwaves and shear interactions between the streaming jet and surrounding gas are quantified as functions of P o and T o. P o is decreased because of friction (loss ranges from 40 to 60%) while T o is nearly conserved. To realize the nozzle exit condition of P e = P amb, we demonstrate that P o should be adjusted rather than T o, as T o has little effect on exit pressures. On the other hand, T o is more influential than P o for varying the exit velocity. Various nozzle geometries yielding different flow characteristics, and hence, different operating conditions and coating performances are investigated. The corresponding supersonic flows for three types of nozzles (under-, correctly, and over-expanded) are simulated, and their correctly expanded (or shock-free) operating conditions are identified. Diamond shock structures induced by the pressure imbalance between the exiting gas and the surrounding atmosphere are captured.
KW - cold spray
KW - diamond shock structure
KW - supersonic nozzle
KW - thin-film coating
UR - http://www.scopus.com/inward/record.url?scp=80053375020&partnerID=8YFLogxK
U2 - 10.1007/s11666-011-9641-1
DO - 10.1007/s11666-011-9641-1
M3 - Review article
AN - SCOPUS:80053375020
SN - 1059-9630
VL - 20
SP - 1085
EP - 1097
JO - Journal of Thermal Spray Technology
JF - Journal of Thermal Spray Technology
IS - 5
ER -