Abstract
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
Original language | English |
---|---|
Journal | SAE Technical Papers |
Volume | 2018-October |
Issue number | October |
DOIs | |
Publication status | Published - 2018 Oct 5 |
Event | SAE 36th Annual Brake Colloquium and Exhibition, BRAKE 2018 - Palm Desert, United States Duration: 2018 Oct 14 → 2018 Oct 17 |
Bibliographical note
Publisher Copyright:© 2018 SAE International. All Rights Reserved.
ASJC Scopus subject areas
- Automotive Engineering
- Safety, Risk, Reliability and Quality
- Pollution
- Industrial and Manufacturing Engineering