Abstract
Post-translational modification of cellular proteins by β-o-linked N-acetylglucosamine (o-GlcNAc) moieties plays a significant role in signal transduction by modulating protein stability, protein-protein interactions, transactivation processes, and the enzyme activities of target proteins. Though various classes of proteins are known to be regulated by o-GlcNAc modification (o-GlcNAcylation), the mechanism that regulates o-linked GlcNAc transferase (OGT) activity remains unknown. Here, we report that potassium chloride-induced depolarization provokes the activation of OGT and subsequent o-GlcNAcylation of proteins in neuroblastoma NG-108-15 cells. Moreover, such an induction of protein o-GlcNAcylation was abolished by treating cells with either a voltage-gated calcium channel inhibitor or a calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. In addition, CaMKIV was found to specifically phosphorylate and activate OGT in vivo and in vitro, which implies that CaMKIV is required for depolarization-induced activation of OGT. Furthermore, we found that OGT is involved in depolarization-induced and CaMKIV-dependent activation of activator protein-1 (AP-1) and subsequent tissue inhibitor of metalloproteinase-1 (Timp-1) gene expression. Taken together, our findings suggest that CaMKIV activated OGT, and OGT has an essential role on the process of CaMKIV-dependent AP-1 activation under depolarization in neuronal cells.
Original language | English |
---|---|
Pages (from-to) | 94-104 |
Number of pages | 11 |
Journal | Cellular Signalling |
Volume | 20 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 Jan |
Externally published | Yes |
Keywords
- AP-1
- Ca/calmodulin-dependent kinase IV
- Depolarization
- Tissue inhibitor of metalloproteinases-1
- o-GlcNAc transferase
ASJC Scopus subject areas
- Cell Biology