Abstract
In this paper, a one-class Naive Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naive Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.
Original language | English |
---|---|
Pages (from-to) | 1353-1357 |
Number of pages | 5 |
Journal | IEICE Transactions on Information and Systems |
Volume | E96-D |
Issue number | 5 |
DOIs | |
Publication status | Published - 2014 May |
Externally published | Yes |
Keywords
- Genetic algorithm
- Novelty detection
- One-class Naive Bayesian classifier
- Toll fraud detection
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering
- Artificial Intelligence