Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images

Xiubin Dai, Yaozong Gao, Dinggang Shen

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmarkguided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as a detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors' proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the authors' method achieves the best performance. Conclusions: By appropriate use of valuable patient-specific information contained in the previous treatment images, the authors' proposed online update scheme can obtain satisfactory results for both landmark detection and prostate segmentation.

    Original languageEnglish
    Pages (from-to)2594-2606
    Number of pages13
    JournalMedical physics
    Volume42
    Issue number5
    DOIs
    Publication statusPublished - 2015 May 1

    Bibliographical note

    Publisher Copyright:
    © 2015 American Association of Physicists in Medicine.

    Keywords

    • Context-aware landmark detection
    • Online update
    • Prostate segmentation
    • Regression forest

    ASJC Scopus subject areas

    • Biophysics
    • Radiology Nuclear Medicine and imaging

    Fingerprint

    Dive into the research topics of 'Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images'. Together they form a unique fingerprint.

    Cite this