Optimal design of permanent magnet thrust bearings

Seong Yeol Yoo, Woo Yeon Kim, Seung Jong Kim, Wook Ryun Lee, Yong Chae Bae, Myounggyu Noh

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method We considered the following two types of magnet anays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that die accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

Original languageEnglish
Pages (from-to)353-358
Number of pages6
JournalTransactions of the Korean Society of Mechanical Engineers, A
Issue number4
Publication statusPublished - 2011 Apr


  • Magnetic levitation
  • Optimal design
  • Passive magnetic bearing
  • Thrust bearing

ASJC Scopus subject areas

  • Mechanical Engineering


Dive into the research topics of 'Optimal design of permanent magnet thrust bearings'. Together they form a unique fingerprint.

Cite this