Abstract
Recent developments of dense retrieval rely on quality representations of queries and contexts from pre-trained query and context encoders. In this paper, we introduce TOUR (Test-Time Optimization of Query Representations), which further optimizes instance-level query representations guided by signals from test-time retrieval results. We leverage a cross-encoder re-ranker to provide fine-grained pseudo labels over retrieval results and iteratively optimize query representations with gradient descent. Our theoretical analysis reveals that TOUR can be viewed as a generalization of the classical Rocchio algorithm for pseudo relevance feedback, and we present two variants that leverage pseudo-labels as hard binary or soft continuous labels. We first apply TOUR on phrase retrieval with our proposed phrase re-ranker, and also evaluate its effectiveness on passage retrieval with an off-the-shelf reranker. TOUR greatly improves end-to-end open-domain question answering accuracy, as well as passage retrieval performance. TOUR also consistently improves direct re-ranking by up to 2.0% while running 1.3-2.4× faster with an efficient implementation.
Original language | English |
---|---|
Title of host publication | Findings of the Association for Computational Linguistics, ACL 2023 |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 5731-5746 |
Number of pages | 16 |
ISBN (Electronic) | 9781959429623 |
DOIs | |
Publication status | Published - 2023 |
Event | Findings of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada Duration: 2023 Jul 9 → 2023 Jul 14 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
ISSN (Print) | 0736-587X |
Conference
Conference | Findings of the Association for Computational Linguistics, ACL 2023 |
---|---|
Country/Territory | Canada |
City | Toronto |
Period | 23/7/9 → 23/7/14 |
Bibliographical note
Publisher Copyright:© 2023 Association for Computational Linguistics.
ASJC Scopus subject areas
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics