Abstract
We propose the chainization algorithm for effective order learning when only partially ordered data are available. First, we develop a binary comparator to predict missing ordering relations between instances. Then, by extending the Kahn’s algorithm, we form a chain representing a linear ordering of instances. We fine-tune the comparator over pseudo pairs, which are sampled from the chain, and then re-estimate the linear ordering alternately. As a result, we obtain a more reliable comparator and a more meaningful linear ordering. Experimental results show that the proposed algorithm yields excellent rank estimation performances under various weak supervision scenarios, including semi-supervised learning, domain adaptation, and bipartite cases. The source codes are available at https://github.com/seon92/Chainization.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 - 17th European Conference, 2022, Proceedings |
Editors | Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 196-211 |
Number of pages | 16 |
ISBN (Print) | 9783031197772 |
DOIs | |
Publication status | Published - 2022 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 2022 Oct 23 → 2022 Oct 27 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13673 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 22/10/23 → 22/10/27 |
Bibliographical note
Funding Information:Acknowledgments. This work was supported by the NRF grants funded by the Korea government (MSIT) (No. NRF-2021R1A4A1031864 and No. NRF-2022R1A2B5B03002310) and also by IITP grant funded by the Korea government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub).
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Aesthetic assessment
- Facial age estimation
- Facial expression recognition
- Order learning
- Rank estimation
- Topological sorting
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science