Over 19% Efficiency in Ternary Organic Solar Cells Enabled by n-Type Dopants

Zhaoheng Ling, Mohamad Insan Nugraha, Wisnu Tantyo Hadmojo, Yuanbao Lin, Sang Young Jeong, Emre Yengel, Hendrik Faber, Hua Tang, Frédéric Laquai, Abdul Hamid Emwas, Xiaoming Chang, Temur Maksudov, Murali Gedda, Han Young Woo, Iain McCulloch, Martin Heeney, Leonidas Tsetseris, Thomas D. Anthopoulos

    Research output: Contribution to journalArticlepeer-review

    26 Citations (Scopus)

    Abstract

    Molecular doping has become a valuable technique for enhancing the efficiency of high-performance organic photovoltaic systems (OPVs). However, the number of known dopant molecules, especially n-type ones, that enhance the PCE of OPVs remains limited. In this study, two n-type dopants, ethyl viologen (EV) and methyl viologen (MV), are synthesized and incorporated into ternary PM6:BTP-eC9:PC71BM bulk heterojunction (BHJ) OPVs. Both dopants are found to enhance the OPV performance, yielding maximum PCE values of 19.03% and 18.61%, respectively. We show that EV and MV function as n-type dopants and microstructure modifiers, enhancing π-π stacking while increasing the absorption coefficient of the BHJs. Moreover, the n-doping balances the carrier mobility while increasing the carrier lifetime and reducing bimolecular recombination. Our results demonstrate the potential of EV and MV to improve the performance of highly efficient OPVs to levels beyond those achievable by the pristine BHJ.

    Original languageEnglish
    Pages (from-to)4104-4112
    Number of pages9
    JournalACS Energy Letters
    Volume8
    Issue number10
    DOIs
    Publication statusPublished - 2023 Oct 13

    Bibliographical note

    Publisher Copyright:
    © 2023 American Chemical Society.

    ASJC Scopus subject areas

    • Chemistry (miscellaneous)
    • Renewable Energy, Sustainability and the Environment
    • Fuel Technology
    • Energy Engineering and Power Technology
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Over 19% Efficiency in Ternary Organic Solar Cells Enabled by n-Type Dopants'. Together they form a unique fingerprint.

    Cite this