Abstract
The behavior of oxygen adsorption on the surface of liquid Cu-Ag alloys was investigated by measuring their surface tension (σ) with the sessile drop method in the oxygen partial pressures (pO2,) between 2.5 × 10-11 and 2.5 × 10-3 Pa. The oxygen adsorption (the surface excess concentration of oxygen) was calculated from the slope of dσ/d ln pO2 by applying Gibbs adsorption isotherm, for liquid Cu, Cu-5 at%Ag, Cu-10at%Ag, Cu-20at%Ag and Ag. It was found that the oxygen adsorption increased with the oxygen partial pressure, up to saturation on the surface. The oxygen adsorption on the surface of liquid Cu-20 at%Ag alloys exhibited almost the same behavior as that of pure liquid Ag, because surface saturation was not achieved for the Cu-20 at%Ag alloys, even at high oxygen partial pressures. Thermodynamic calculations using Butler's model indicated that the mole fraction of Ag in the surface of liquid Cu-Ag alloys drastically increases to 0.81 when the mole fraction of Ag in the bulk is only 0.2. Thus, it is considered that the outermost surface of liquid Cu-20 at% Ag alloys contains an enhanced level of Ag, which determines the oxygen adsorption behavior on liquid Cu-20 at%Ag alloys.
Original language | English |
---|---|
Pages (from-to) | 2719-2722 |
Number of pages | 4 |
Journal | Materials Transactions |
Volume | 45 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2004 Aug |
Externally published | Yes |
Keywords
- Adsorption
- Metals and alloys
- Oxygen
- Sessile drop method
- Surface tension
- Surfaces
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering