Abstract
Ultrafine quantum-dot-modified nitrogen-doped graphene has attracted board interest and has become frontier research in metal-air batteries and fuel cells. In this study, oxygen vacancy defect tungsten oxide quantum dots (Vo-WO3 QDs) are embedded in nitrogen-doped graphene (NG) to form abundant heterogeneous interfacial electrocatalysts (Vo-WO3 QDs/NG), which exhibits advanced electrocatalytic activity for oxygen reduction reaction (ORR) in an alkaline electrolyte. The optimized Vo-WO3 QDs/NG-5 (W content of 0.14 wt%) exhibits high onset potential (0.932 V vs. RHE) and decent half-wave potential (0.762 V vs. RHE) with high stability, which outperforms other reported tungsten metal oxide-based ORR electrocatalysts. The outstanding electrocatalytic performances of Vo-WO3 QDs/NG-5 are contributed by higher amount of oxygen vacancy and defects in Vo-WO3 QDs, as well as tunable interfacial electronic properties between the Vo-WO3 QDs and NG support. Furthermore, the density functional theory (DFT) is systematically conducted to determine the electronic properties and interface charge transmission for Vo-WO3 QDs/NG entity, providing important insight on the electrocatalysts in terms of band regulation and electron transport at the active interface between Vo-WO3 QDs and NG. Our finding paves an efficient pathway to design highly active hetero-structural and durable electrocatalysts for ORR applications based on defect-rich metal oxide QDs supported on nitrogen-doped graphene.
Original language | English |
---|---|
Article number | 164588 |
Journal | Journal of Alloys and Compounds |
Volume | 908 |
DOIs | |
Publication status | Published - 2022 Jul 5 |
Bibliographical note
Publisher Copyright:© 2022 Elsevier B.V.
Keywords
- Defect WO QDs
- Electrocatalyst
- Interfacial effect
- N-doped graphene
- ORR
ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry