Abstract
P2Y1 purinergic receptors (P2Y1Rs) mediate rises in intracellular Ca2+ in response to ATP, but the duration and characteristics of this Ca2+ response are known to vary markedly in distinct cell types. We screened the P2Y1R carboxyl terminus against a recently created proteomic array of PDZ (PSD-95/Drosophila Discs large/ZO-1 homology) domains and identified a previously unrecognized, specific interaction with the second PDZ domain of the scaffold NHERF-2 (Na+/H + exchanger regulatory factor type 2). Furthermore, we found that P2Y1R and NHERF-2 associate in cells, allowing NHERF-2-mediated tethering of P2Y1R to key downstream effectors such as phospholipase Cβ. Finally, we found that coexpression of P2Y1R with NHERF-2 in glial cells prolongs P2Y1R-mediated Ca2+ signaling, whereas disruption of the P2Y1R-NHERF-2 interaction by point mutations attenuates the duration of P2Y1R-mediated Ca2+ responses. These findings reveal that NHERF-2 is a key regulator of the cellular activity of P2Y1R and may therefore determine cell-specific differences in P2Y1R-mediated signaling.
Original language | English |
---|---|
Pages (from-to) | 8042-8047 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 102 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2005 May 31 |
Keywords
- ATP
- G protein-coupled receptor
- Proteomic array
- Purinergic
ASJC Scopus subject areas
- General