PEPSI: Fast image inpainting with parallel decoding network

Min Cheol Sagong, Yong Goo Shin, Seung Wook Kim, Seung Park, Sung Jea Ko

Research output: Chapter in Book/Report/Conference proceedingConference contribution

121 Citations (Scopus)

Abstract

Recently, a generative adversarial network (GAN)-based method employing the coarse-to-fine network with the contextual attention module (CAM) has shown outstanding results in image inpainting. However, this method requires numerous computational resources due to its two-stage process for feature encoding. To solve this problem, in this paper, we present a novel network structure, called PEPSI: Parallel extended-decoder path for semantic inpainting. PEPSI can reduce the number of convolution operations by adopting a structure consisting of a single shared encoding network and a parallel decoding network with coarse and inpainting paths. The coarse path produces a preliminary inpainting result with which the encoding network is trained to predict features for the CAM. At the same time, the inpainting path creates a higher-quality inpainting result using refined features reconstructed by the CAM. PEPSI not only reduces the number of convolution operation almost by half as compared to the conventional coarse-to-fine networks but also exhibits superior performance to other models in terms of testing time and qualitative scores.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages11352-11360
Number of pages9
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - 2019 Jun
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 2019 Jun 162019 Jun 20

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period19/6/1619/6/20

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Deep Learning
  • Image and Video Synthesis

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'PEPSI: Fast image inpainting with parallel decoding network'. Together they form a unique fingerprint.

Cite this