Performance analysis of ionic liquids for simultaneous cooling and heating absorption system

Sejun Park, Hyung Won Choi, Jae Won Lee, Hyun Uk Cho, Nam Soo Lee, Yong Tae Kang

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


A new working fluid for simultaneous cooling and heating absorption system, which is a combination of type 1 and type 2 absorption systems, was analyzed by simulation analysis. An imidazolium-based ionic liquid (IL) was used as an absorbent in the new working fluid and H2O and R32 were used as refrigerants. The states of the solution mixed with the refrigerant and absorbent were predicted using a non-random two-liquid (NRTL) model. The ILs with H2O refrigerant were 1,3-dimethylimidazolium dimethylphosphate ([DMIM][DMP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), and 1-ethyl-3-methyl tetrafluoroborate ([EMIM][BF4]), and the IL with R32 refrigerant was 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]). Changes in the cooling, heating, and total coefficient of performances (COPs) according to the generation temperature and generator and condenser split ratios were analyzed. It was concluded that H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4] were suitable for simultaneous cooling and heating absorption systems with reasonable cooling, heating and total COPs. However, R32/[HMIM][Tf2N] had advantages for subzero cooling temperature and compactness of system size, while its COPs were lower than those of H2O/[DMIM][DMP], H2O/[EMIM][DMP], and H2O/[EMIM][BF4]. The total COP of H2O/[DMIM][DMP] was 0.98, indicating the highest performance. H2O/[EMIM][DMP] and H2O/[EMIM][BF4] exhibited total COPs of 0.96 and 0.97, whereas R32/[HMIM][Tf2N] showed a value of 0.55, under certain simulation conditions.

Original languageEnglish
Article number127005
Publication statusPublished - 2023 May 15

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea( NRF ) grant funded by the Korea government ( MSIT ) (No. 2020R1A5A1018153 ).

Publisher Copyright:
© 2023 Elsevier Ltd


  • Absorption system
  • Coefficient of performance
  • HO
  • Ionic liquid
  • R32
  • Simultaneous cooling and Heating

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Modelling and Simulation
  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Pollution
  • Mechanical Engineering
  • General Energy
  • Management, Monitoring, Policy and Law
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Performance analysis of ionic liquids for simultaneous cooling and heating absorption system'. Together they form a unique fingerprint.

Cite this